Reprinted from the Maths. Student-Vol. XI. Nos. 1-2, Mar.-June 1943

Solve

A Problem of Ramanujam †

$x^2 = a + y$	(i)
$y^2 = a + z \qquad \bullet$	(ii)
$z^2 = a + u$	(iii	
$u^2 = a + x$	(iv)

1. Suppose x, y, z, u are the roots of a biquadratic $t^4 + p_1 t^3 + p_2 t^2 + p_3 t + p_4 = 0$

We denote $\sum x^n$ by S_n . Now $S_1 = -p_1$ $S_2 = 4a + S_1 = 4a - p_1$ from the given equations ... (a) Also $S_2 + p_1 S_1 + 2p_2 = 0$:. Substituting for S₁, S₂ we have $p_2 = \frac{p_1^2 + p_1 - 4a}{2}$... (b) 2. Subtract (iii) from (i) and (iv) from (ii) $x^{2}-z^{2}=y-u$; $y^{2}-u^{2}=z-x$: $(x^2 - z^2)(y^2 - u^2) = (y - u)(z - x)$ or xy + zy + ux + uz = -1But $\sum xy = p_2$ So $xz + uy = p_2 + 1$... (c) 3. $x^3 = ax + xy$ $y^3 = ay + yz$ Adding $S_3 = aS_1 + xy + zy + ux + uz$ $= -ap_1 - 1$... (d) Also $x^2 z^2 = a^2 + au + ay + uy$ $y^2 u^2 = a^2 + az + ax + zx$

Adding, $x^2z^2 + y^2u^2 = 2a^2 + aS_1 + uy + zx$ $(xz + uy)^2 = 2a^2 + aS_1 + p_2 + 1 + 2p_4$ [$xyzu = p_4$] $(p_2 + 1)^2 = 2a^2 - ap_1 + p_2 + 1 + 2p_4$ $\therefore 2p_4 = p_2^2 + p_2 - 2a^2 + ap_1$... (e)

4. Evidently $(x^{2} - y^{2})(y^{2} - z^{2})(z^{2} - u^{2})(u^{2} - x^{2}) = (x - y)(y - z)(z - u)(u - x)$ or (x + y)(y + z)(z + u)(u + x) = 1or $(x^{2}z^{2} + u^{2}y^{2} + 2xyzu) + \sum x^{2}yz = 1$ $(p_{2} + 1)^{2} + p_{1} p_{3} - 4p_{4} = 1$ $\{\sum x^{2}yz = p_{1} p_{3} - 4p_{4}\}$ Substituting for p_{4} from (e) $p_{1} p_{3} - p_{2}^{2} + 4a^{2} - 2ap_{1} = 0$... (f)

+ Vide Collected Papers of Srinivasa Ramanujan, 1927, p. 332 Q. 722 Also J. I. M. S. Series I Vol. VII p. 240.

5. We know

 $S_3 + p_1 S_2 + p_2 S_1 + 3p_3 = 0$

Substituting for S_3 , S_2 , S_1 , p_2

we get

$$6p_3 = 3p_1^2 + p_1^3 - 10 \ ap_1 + 2 \qquad \dots \qquad (g)$$

Substitute for p_3 from (g) in (f)

we get

$$p_1^4 - (4a - 3) \quad p_1^3 - 4 p_1 = 0 \qquad \dots (h)$$

$$p_1 \quad \{p_1^3 - (4a - 3) \quad p_1 - 4\} = 0$$

The cubic in p_1 can be solved by the usual methods. p_1 known, p_3 , p_3 , p_4 can easily be discovered and the corresponding biquadratic in t can be framed. The biquadratic may be solved by usual methods for x, y, zu; For the particular value $p_1=0$ the biquadratic is

$$t^4 - 2a \ t^2 + \frac{1}{3} \ t + a^2 - a = 0$$

6. By employing the same methods, we can solve the system of equations

$$x^{2} = a + y$$
$$y^{T} = a + z$$
$$z^{2} = a + x$$

much more rapidly than Ramanujan did. His is a very laborious method.

Govt. College, Lahore.

ABDUS SALAM, Fourth Year Student

51

St. Joseph's I. S. Press, Trichy-1944.