A Problem of Ramanujam † Solve $$x^{2} = a + y$$... (i) $y^{2} = a + z$... (ii) $z^{2} = a + u$... (iii) $u^{3} = a + x$... (iv) 1. Suppose x, y, z, u are the roots of a biquadratic $t^4 + p_1 t^3 + p_2 t^2 + p_3 t + p_4 = 0$ We denote $\sum x^n$ by S_n . Now $S_1 = -p_1$ $$S_2 = 4a + S_1 = 4a - p_1$$ from the given equations ... (a) Also $S_2 + p_1 S_1 + 2p_2 = 0$:. Substituting for $$S_1$$, S_2 we have $p_2 = \frac{p_1^2 + p_1 - 4a}{2}$... (b) 2. Subtract (iii) from (i) and (iv) from (ii) $x^2 - z^2 = y - u$; $y^2 - u^2 = z - x$ $$(x^{2}-z^{2})(y^{2}-u^{2}) = (y-u)(z-x)$$ or $xy+zy+ux+uz=-1$ But $\sum xy = p_{2}$ So $xz+uy=p_{2}+1$... (c) 3. $$x^3 = ax + xy$$ $$y^3 = ay + yz$$ Adding $$S_3 = aS_1 + xy + zy + ux + uz$$ = $-ap_1 - 1$... (d) Also $$x^2z^2 = a^2 + au + ay + uy$$ $y^2u^2 = a^2 + az + ax + zx$ Adding, $$x^2z^2 + y^2u^2 = 2a^2 + aS_1 + uy + zx$$ $(xz + uy)^2 = 2a^2 + aS_1 + p_2 + 1 + 2p_4$ $[xyzu = p_4]$ $(p_2 + 1)^2 = 2a^2 - ap_1 + p_2 + 1 + 2p_4$ $\therefore 2p_4 = p_2^2 + p_2 - 2a^2 + ap_1$... (e) 4. Evidently $$(x^2 - y^2)(y^2 - z^2)(z^2 - u^2)(u^2 - x^2) = (x - y)(y - z)(z - u)(u - x)$$ $$= (x + y)(y + z)(z + u)(u + x) = 1$$ or $$(x^2z^2 + u^2y^2 + 2xyzu) + \sum x^2yz = 1$$ $(p_2 + 1)^2 + p_1 p_3 - 4p_4 = 1$ $\{\sum x^2yz = p_1 p_3 - 4p_4\}$ Substituting for p_4 from (e) $$p_1 p_3 - p_2^2 + 4a^2 - 2ap_1 = 0 ... (f)$$ ⁺ Vide Collected Papers of Srinivasa Ramanujan, 1927, p. 332 Q. 722 Also J. I. M. S. Series I Vol. VII p. 240. 5. We know $$S_2 + p_1 S_2 + p_2 S_1 + 3p_3 = 0$$ Substituting for S_3 , S_2 , S_1 , p_2 we get $$6p_3 = 3p_1^2 + p_1^3 - 10 \ ap_1 + 2 \qquad \dots \qquad (g)$$ Substitute for p_3 from (g) in (f) we get $$p_1^4 - (4a - 3) \ p_1^3 - 4 \ p_1 = 0 \qquad \dots (h)$$ $$p_1 \ \{ p_1^3 - (4a - 3) \ p_1 - 4 \} = 0$$ The cubic in p_1 can be solved by the usual methods. p_1 known, p_3 , p_3 , p_4 can easily be discovered and the corresponding biquadratic in t can be framed. The biquadratic may be solved by usual methods for x, y, zu; For the particular value $p_1 = 0$ the biquadratic is $$t^4 - 2a \ t^2 + \frac{1}{3} \ t + a^2 - a = 0$$ 6. By employing the same methods, we can solve the system of equations $$x^{2} = a + y$$ $$y^{2} = a + z$$ $$z^{2} = a + x$$ much more rapidly than Ramanujan did. His is a very laborious method. Govt. College, Lahore. ABDUS SALAM, Fourth Year Student