A Problem of Ramanujam †

Solve

$$x^{2} = a + y$$
 ... (i)
 $y^{2} = a + z$... (ii)
 $z^{2} = a + u$... (iii)
 $u^{3} = a + x$... (iv)

1. Suppose x, y, z, u are the roots of a biquadratic $t^4 + p_1 t^3 + p_2 t^2 + p_3 t + p_4 = 0$

We denote $\sum x^n$ by S_n .

Now $S_1 = -p_1$

$$S_2 = 4a + S_1 = 4a - p_1$$
 from the given equations ... (a)

Also $S_2 + p_1 S_1 + 2p_2 = 0$

:. Substituting for
$$S_1$$
, S_2 we have $p_2 = \frac{p_1^2 + p_1 - 4a}{2}$... (b)

2. Subtract (iii) from (i) and (iv) from (ii) $x^2 - z^2 = y - u$; $y^2 - u^2 = z - x$

$$(x^{2}-z^{2})(y^{2}-u^{2}) = (y-u)(z-x)$$
or $xy+zy+ux+uz=-1$
But $\sum xy = p_{2}$
So $xz+uy=p_{2}+1$... (c)

3.
$$x^3 = ax + xy$$
$$y^3 = ay + yz$$

Adding
$$S_3 = aS_1 + xy + zy + ux + uz$$

= $-ap_1 - 1$... (d)

Also
$$x^2z^2 = a^2 + au + ay + uy$$

 $y^2u^2 = a^2 + az + ax + zx$

Adding,
$$x^2z^2 + y^2u^2 = 2a^2 + aS_1 + uy + zx$$

 $(xz + uy)^2 = 2a^2 + aS_1 + p_2 + 1 + 2p_4$ $[xyzu = p_4]$
 $(p_2 + 1)^2 = 2a^2 - ap_1 + p_2 + 1 + 2p_4$
 $\therefore 2p_4 = p_2^2 + p_2 - 2a^2 + ap_1$... (e)

4. Evidently

$$(x^2 - y^2)(y^2 - z^2)(z^2 - u^2)(u^2 - x^2) = (x - y)(y - z)(z - u)(u - x)$$

$$= (x + y)(y + z)(z + u)(u + x) = 1$$

or
$$(x^2z^2 + u^2y^2 + 2xyzu) + \sum x^2yz = 1$$

 $(p_2 + 1)^2 + p_1 p_3 - 4p_4 = 1$ $\{\sum x^2yz = p_1 p_3 - 4p_4\}$

Substituting for p_4 from (e)

$$p_1 p_3 - p_2^2 + 4a^2 - 2ap_1 = 0 ... (f)$$

⁺ Vide Collected Papers of Srinivasa Ramanujan, 1927, p. 332 Q. 722 Also J. I. M. S. Series I Vol. VII p. 240.

5. We know

$$S_2 + p_1 S_2 + p_2 S_1 + 3p_3 = 0$$

Substituting for S_3 , S_2 , S_1 , p_2

we get

$$6p_3 = 3p_1^2 + p_1^3 - 10 \ ap_1 + 2 \qquad \dots \qquad (g)$$

Substitute for p_3 from (g) in (f)

we get

$$p_1^4 - (4a - 3) \ p_1^3 - 4 \ p_1 = 0 \qquad \dots (h)$$

$$p_1 \ \{ p_1^3 - (4a - 3) \ p_1 - 4 \} = 0$$

The cubic in p_1 can be solved by the usual methods. p_1 known, p_3 , p_3 , p_4 can easily be discovered and the corresponding biquadratic in t can be framed. The biquadratic may be solved by usual methods for x, y, zu; For the particular value $p_1 = 0$ the biquadratic is

$$t^4 - 2a \ t^2 + \frac{1}{3} \ t + a^2 - a = 0$$

6. By employing the same methods, we can solve the system of equations

$$x^{2} = a + y$$

$$y^{2} = a + z$$

$$z^{2} = a + x$$

much more rapidly than Ramanujan did. His is a very laborious method.

Govt. College, Lahore.

ABDUS SALAM, Fourth Year Student